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Abstract 

The main purpose of the study is to test the hypothesis whether the second digit of demographic data 

2011 Census-Al obeys Benford’s law. We consider 2827 data divided into five groups. The source of 

official data is INSTAT. 

The results of this study include: 

1. The mean of second digit for all five groups of the data converge to Benford’s law, at the 

confidence level 95%. 

2. The data for group 1 obeys Benford’s law at the confidence level 95%. 

3. The data for group 2 obeys Benford’s law at the confidencde level 95%. 

4. The data for group 3 contradicts Benford’s law at the confidence level 99.5%. 

5. The data for group 4 obeys Benford’s law at the confidencde level 95%. 

6. The data for group 5 contradicts Benford’s law at the confidence level 95%. 

7. The data for groups 1,2,3,4,5 together contradict Benford’s law at the confidence 90%.  

Therefore, these 2827 official data obtained from 2011 Census-Al are suspectable for 

manipulation. 

Key words: 2011 census, Albania, Benford’s law, second digit, chi-squared test, manipulation 

1. Introduction 

In the present study we develop a statistical analysis, based on Benford’s law, for the second digit of the 

demographic data 2011 Census-Albania. Let us explain briefly Benford’s law. The universality is a 

remarkable phenomenon in Modern Probability Theory: many seemingly unrelated probability 

distributions of random variables which involve (contain) large numbers of unknown parameters, can end 

up converging to a universal law that may only depend on a small handful of parameters. One of the most 

famous examples of the universality phenomenon is the Kolmogorov’s Central Limit Theory. 

Analogous universality phenomena also show up in empirical distributions – the probability distribution 

of a random variable � from a large population of “real-world” objects. Examples include Benford’s law 

and Zipf’s law. 
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Benford’s law governs the asymptotic probability distribution of many (but not all) real-life sources of 

data (random variables) � which satisfy the following assumptions: 

1. The set of possible values of � is �� = (0, +∞). 

2. � range over many different orders of magnitude. 

3. � arise from a complicated combination of largely random independent factors, with different 

random samples of � selected from different independent factors. 

4. The data have not been artificially rounded, truncated, or otherwise manipulated. 

Like the Central Limit Theory, Benford’s Law is an empirically observable phenomenon. 

Benford’s probability distribution is a second generation distribution, a complicated combination of other 

probability distributions. 

If random variables are selected at random, and the samples are obtained from each of these random 

variables, then the combined samplings will converge to Benford’s distribution, even though the 

individual distributions may not closely follow the Benford’s law, see Hill (1995, 1998) and Tao (2009). 

The key is in the combining of data from different sources. Benford’s distribution is a distribution of 

distributions. Janvresse and la Rue (2004) advanced the similar probabilistic explanation for the 

appearance of Benford’s law in everyday-life numbers, when we consider mixtures of uniform 

distributions. Benford’s law reflects a profound harmonic truth of nature. 

Definition 1 

A set of positive real numbers is said to satisfy Benford’s law if the leading digit d occurs with probability 


(�) = log��(1 + 1
�) ���� = 1,2, … ,9 

According to Benford’s law, the leading digit d follows the following probability distribution: 

� 1 2 3 4 5 6 7 8 9 


(�) 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.049 

 

Generalization of Benford’s law to digits beyond the first: 


(���������������������� = �) =  log��(1 + 1
10! + �)

"

#$�
, ���� = 0,1,2, … 9 


(�ℎ������������������� = �) =  log��(1 + 1
10! + �)

""

#$��
, ���� = 0,1,2, … 9 


&�'(���������������� = �) =  log��(1 + 1
10! + �)

��*+,-�

#$�
, ���� = 0,1,2, … 9 ���� = 2,3,4,5, … 

In particular, the probability of the random event that a positive real number starts with the string of digits 

n is calculated by the formula: 
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(���������������) = log��(1 + 1
�) 

For example, the probability that a positive real number starts with digits 3, 1, 4 is equal to  

log��(1 + 1
314) ≈ 0.0014 

Corollary 1 

The significant digits are dependent (and not independent as one might expect). 

For example, the unconditional probability that the second digit is 2 is 0.10882, but the conditional 

probability that the second digit is 2, given the first digit is 1, is log�� 41 + �
�56 : 0.30103 = 0.11548. 

Table 1 shows the expected relative frequencies for all digits 0 through 9 in each of the first four places in 

any positive real number, based on Benford’s law. 

Table 1. Expected relative frequencies based on Benford’s law 

Digit 1st place 2nd place 3rd place 4th place 

0  0.11968 0.10178 0.10018 

1 0.30103 0.11389 0.10138 0.10014 

2 0.17609 0.10882 0.10097 0.10010 

3 0.12494 0.10433 0.10057 0.10006 

4 0.09691 0.10031 0.10018 0.10002 

5 0.07918 0.09668 0.09979 0.09998 

6 0.06695 0.09337 0.09940 0.09994 

7 0.05799 0.09035 0.09902 0.09990 

8 0.05115 0.08757 0.09864 0.09986 

9 0.04576 0.08500 0.09827 0.09982 

Source: Nigrini (1996) 

Definition 2 

The base 10 mantissa of an arbitrary positive real number 9 is the unique real number : ∈ [0.1, 1) such 

that 9 = : × 10> for some integer � ∈ ?. 

Examples 

@�������(356) = 0.356,  
@�������(3560) = 0.356,  
@�������(35.6) = 0.356,  
@�������(0.356) = 0.356, 

@�������(2) = 0.2, 
@�������(20) = 0.2, ��� 

The general form of the Benford’s law: 


��B(@�����������CD�����E����F�:@B��9 ≤ :) = log��(10:) , ∀: ∈ [0.1, 1) 
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Benford’s law is stated here for base 10, which is what we are most familiar with, but the Benford’s 

law holds for any base, after replacing all the occurrences of 10 in the above law with the new base, 

of course. 

The Benford’s law tends to break down if the assumptions 1-4 are dropped. For instance, if the 

random variable �concentrates around its mean I (as opposed to being spread over many orders of 

magnitude), then the normal distribution tends to be an appropriate mathematical model, as indicated 

by the Kolmogorov’s Central Limit Theorem. The independence property of the factors (see 

assumption 3) is crucial. If, for instance, population � growth always slowed down for some 

(inexplicable) reason to a crawl whenever the first digit of the population � was 6, then there would 

be a noticeable deviation from the Benford’s law in digits 6 and 7, due to this bottleneck (bottle-

neck). 

Roughly speaking, Benford’s law asserts that the bulk probability density distribution of log�� � is 

locally uniform at unit scale. 

Benford’s law enjoys scale invariance: this law should be independent of the unit chosen (by 

changing the unit of measurement); for example, using metric system of units versus English system 

of units. However, according to Knuth and Gnedenko, there is no scale invariant probability measure 

on the Borel subsets of ��. Therefore, the Borel sigma-algebra (the smallest sigma-algebra 

containing all open intervals) is not the appropriate domain for the Benford’s law. An appropriate 

probability domain J for the Benford’s law is defined rigorously by Hill (1995), p323. 

Definition 3 

The appropriate domain J for the probability is the smallest (minimal) collection of subsets of the 

positive real numbers, which contains all sets of the form 

K (�, B) × 10>
∞

>$-∞
, ���� > 0, B > 0 

and which is closed under complements and countable unions. 

Main properties of the appropriate domain M 

1. Every non-empty set in J is infinite, with accumulating points at 0 and +∞. 

2. J is closed under scalar multiplication: ∀� > 0 ���∀N ∈ J ⟹ a × S ∈ J. 

3. J is self-similar in the sense that if N ∈ J���� ∈ ?, then 10> × N = N. 

The definition of the appropriate domain J for the probability is the first step toward making rigorous 

sense of the Benford’s law. 

Theorem 1 (Hill, 1995) 

On the appropriate probability domain J, scale invariance implies Benford’s law. 

Theorem 2 (Tao, 2009) 

If the random variable � obeys Benford’s law and R is an arbitrary positive random variable independent 

of �, then the product S = � × R obeys Benford’s law, even if R did not obey this law. 
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Absorptive property 

If a random variable S is a product of � independent factors ��, �5, … , �> and if a single factor 

(�����5 �� … �>) obeys Benford’s law, then the whole product 

S = �� × �5 × … × �> 

obeys Benford’s law. 

Benford’s law is the unique probability distribution with this absorptive property. If there is another law 

with absorptive property, what would happen if one multiplied a random variable with that law with an 

independent random variable with Benford’s law? 

Diaconis and Freedman (1979), p363, offer convincing evidence that Benford’s law manipulated the 

round-off errors to obtain an even better fit. But even the unmanipulated data seems a remarkably good 

fit, and Benford’s law has become widely accepted. Examples of the random variables that obey 

Benford’s law include: 

• the populations of 235 countries and regions of the world in 2013 (using CIA world factbook), 

• the populations of the cities of USA in 2013, 

• the surface areas of the world states, 

• the mass of astronomic objects, 

• the specific head of thousands of chemical compounds, 

• the surface areas of 335 rivers, 

• the net worth of individuals of the USA in 2013, 

• the net worth of corporates of the USA in 2013, 

• the square-root table of natural numbers, etc. 

The 1990 census populations of the 3141 counties in the USA follow Benford’s law very closely, see 

Nigrini and Wood (1995). 

T. Hill (1995, 1998) noted that Benford’s law is applied to census statistics, stock market data and certain 

accounting data. For instance, the series of one-day return on the Dow-Jones Industral Average Index 

(DJIA) and the Standard and Poor’s Index (S&P) reasonably agrees with Benford’s law. 

Benford’s law has been promoted as providing the auditor with a tool that is effective and simple for the 

detecting fraud in a population of accounting data, see Durtschi, Hillson and Pacini (2004). 

The contemporary bibliographic database on Benford’s law includes more than 180 scientific studies, see 

http://www.benfordonline.net 

In the present study we apply Benford’s law to investigate (for investigating) results of the 2011 Albanian 

population and housing census, see 2011 Census-Al. 

The rest of the paper is organised as follows: 

• Section 2 contains the five groups of the data set. 

• Section 3 provides the investigation of expectation for second digit. 
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• Section 4 presents the hypothesis testing, whether the data for each group follow Benford’s law. 

• Section 5 concludes the paper. 

 

 

 

2. Statistical analysis of the data 

The data set includes five different groups for second significant digit of the demographic data 2011 

Census-Albania. The source of the official data is INSTAT (Albanian Institute of Statistics). 

The first group of the data contains resident population by age group, urban or rural area, sex, martial 

status of the municipality/commune, see 2011 Census-Al, pp 47-53. 

The second group of the data contains resident population by sex, age and country of birth (Albania, 

Greece, Italy, USA, Kosovo, Turkey, Canada, Macedonia, other countries) and place of resident on 1 

April 2001, see 2011 Census-Al, pp 54-57. 

The third group of the data contains resident female population 15 years and over by urban or rural 

areas, age group, number of children ever-born alive and number of children still alive, see 2011 

Census-Al, pp 58-61. 

The fourth group of the data contains resident institutional population by age group and sex, 

ownership of institution, type of collective living quarter and sex, see 2011 Census-Al, pp 62-64. 

The fifth group of the data contains resident Albanian citizens ever residing abroad who returned after 

1 January 2011 by age group, sex and year of returning, country of previous residence and year of 

returning, see 2011 Census-Al, pp 65-69. 

Group 1 contains tables 1.1.1-1.1.3 

Group 2 contains tables 1.1.4-1.1.5 

Group 3 contains tables 1.1.6-1.1.7 

Group 4 contains tables 1.1.8-1.1.9 

Group 5 contains tables 1.1.10-1.1.11 

Using SPSS, IBM version 20, we develop the statistical analysis of the data (second significant digit), 

see Field (2009). 

We calculate the statistical parameters for the first group of the data. 

Sample size 670 

Sample mean 4.5682 

95% confidence interval for mean (3.9743 , 5.1621) 
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Variance 7.857 

Standard deviation 2.8031 

Coefficient of variation 61.36% 

Minimum 0 

Maximum 9 

Range 9 

Skewness 0.046 

Kurtosis -1.347 

 

The statistical parameters for the second group of the data. 

Sample size 651 

Sample mean 4.0568 

95% confidence interval for mean (3.4512 , 4.6624) 

Variance 8.169 

Standard deviation 2.85817 

Coefficient of variation 70.45% 

Minimum 0 

Maximum 9 

Range 9 

Skewness 0.159 

Kurtosis -1.237 

 

The statistical parameters of the third group of data 

Sample size 616 

Sample mean 3.8977 

95% confidence interval for mean (3.3036 , 4.4919) 

Variance 7.863 

Standard deviation 2.8041 

Coefficient of variation 71.94% 

Minimum 0 

Maximum 9 

Range 9 

Skewness 0.312 

Kurtosis -1.133 

 

The statistical parameters for the fourth group of the data 

Sample size 88 

Sample mean 4.1023 

95% confidence interval for mean (3.5240 , 4.6806) 

Variance 7.449 

Standard deviation 2.72932 

Coefficient of variation 66.53% 

Minimum 0 
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Maximum 9 

Range 9 

Skewness 0.171 

Kurtosis -0.998 

 

The statistical parameters for the fifth group of the data 

Sample size 802 

Sample mean 3.8068 

95% confidence interval for mean (3.2752 , 4.3384) 

Variance 6.296 

Standard deviation 2.5091 

Coefficient of variation 65.91% 

Minimum 0 

Maximum 9 

Range 9 

Skewness 0.434 

Kurtosis -0.652 

 

3. Benford’s analysis for the second digit of the data 

Assume that the second digit of the demographic data 2011 Census-Al follows the probability 

distribution implied by Benford’s law. Under this assumption, calculate the expectation of the second 

digit µ=4.18739 

The 95% confidence interval for mean of each group of data is calculated in section 2: 

(3.9743 , 5.1621) for the first group 

(3.4512 , 4.6624) for the second group 

(3.3036 , 4.4919) for the third group 

(3.5240 , 4.6806) for the fourth group 

(3.2752 , 4.3384) for the fifth group 

Answer 

µ≈4.18739 ϵ (3. 9743 , 5.1621), µϵ(3.4512 , 4.6624), µϵ(3.3036 , 4.4919), µϵ(3.5240 , 4.6806), 

µϵ(3.2752 , 4.3384), at the confidence level 95%.  

In other words, the mean of second digit for all five groups of the data selected from 2011 Census-Al are 

in very good accord with Benford’s law (at the confidence level 95%). 

Table 2 contains the observed frequencies of second digit for each group 1,2,3,4,5 of the demographic 

data obtained from 2011 Census-Al. 
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Table 2. The observed frequencies of second digit 

Digit Group 1 Group 2 Group 3 Group 4 Group 5 Total 

1 73 92 50 7 97 319 

2 79 69 87 7 87 329 

3 70 70 83 15 100 338 

4 64 71 58 12 76 281 

5 56 50 72 10 99 287 

6 61 68 55 4 65 253 

7 74 47 44 8 70 243 

8 72 55 40 9 58 234 

9 56 50 58 5 76 245 

0 65 79 69 11 74 298 

Total 670 651 616 88 802 2827 

 

Table 3 contains the expected frequencies of second digit for each group of the demographic data 

obtained from 2011 Census-Al, according to Benford’s law. 

Table 3. The expected frequencies of second digit according to Benford’s law 

Digit Group 1 Group 2 Group 3 Group 4 Group 5 Total 

1 76.3 74.1 70.2 10 91.3 321.9 

2 72.9 70.8 67 9.6 87.3 307.6 

3 69.9 67.9 64.3 9.2 83.7 295 

4 67.2 65.3 61.8 8.8 80.4 283.5 

5 64.8 63 59.6 8.5 77.5 273.4 

6 62.6 60.8 57.4 8.2 74.9 263.9 

7 60.5 58.8 55.7 8 72.5 255.5 

8 58.7 57 53.9 7.7 70.2 247.5 

9 56.9 55.4 52.4 7.5 68.2 240.4 

0 80.2 77.9 73.7 10.5 96 338.3 

Total 670 651 616 88 802 2827 

 

Consider each group 1,2,3,4,5 separately. Ok denotes the observed frequencies of the second digit and ek 

denotes the expected frequencies of the second digit according to Benford’s law, for k=0,1,2,…,9 in each 

specified group of demographic data 2011 Census-Al. 

Test the hypothesis 

H0: The data enjoys Benford’s law. 

H1: The data does not enjoy Benford’s law. 
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The appropriate test statistics is Pearson’s chi-squared test: 

T5 = ∑ (VW-XW)Y
XW

"#$�
,
with degrees of freedom df=9,  

where ek denotes the expected frequency according to Benford’s law and ok denotes the observed 

frequency, see Ramachandran and Tsokos (2009). 

Calculate the observed value of the test statistics for each group separately. 

 

Group 1 

T5 = 
Z.ZY
[\.Z + 

\.�Y
[5." + 

�.�Y
\"." + 

Z.5Y
\[.5 + 

].]Y
\^.] + 

�.\Y
\5.\ + 

�Z._Y
\�._  + 

�Z.ZY
_].[  + 

�."Y
_\." + 

�_.5Y
]�.5  = 10.95 

Group 2 

T5= 
�[."Y
[^.�  + 

�.]Y
[�.] + 

5.�Y
\[." + 

_.[Y
\_.Z + 

�ZY
\Z  + 

[.5Y
\�.] + 

��.]Y
_].]  + 

5Y
_[ + 

_.^Y
__.^ + 

�.�Y
[[." = 11.48 

Group 3 

T5 = 
5�.5Y
[�.5  + 

5�Y
\[  + 

�].[Y
\^.Z  + 

Z.]Y
\�.] + 

�5.^Y
_".\  + 

5.^Y
_[.^ + 

��.[Y
__.[  + 

�Z."Y
_Z."  + 

_.\Y
_5.^ + 

^.[Y
[Z.[ = 27.09 

Group 4 

T5 = 
ZY
�� + 

5.\Y
".\  + 

_.]Y
".5  + 

Z.5Y
].]  + 

�._Y
]._  + 

^.5Y
].5  + 

�Y
]  + 

�.ZY
[.[  + 

5._Y
[._  + 

�._Y
��._ = 10.68 

Group 5 

T5= 
_.[Y
"�.Z + 

�.ZY
][.Z + 

�\.ZY
]Z.[  + 

^.^Y
]�.^ + 

5�._Y
[[._  + 

"."Y
[^." + 

5._Y
[5._ + 

�5.5Y
[�.5  + 

[.]Y
\].5 + 

55Y
"\  = 19.55 

Find the critical value T5̀=Ta5(df)=Ta5(9), where α denotes the significance level and df=10-1=9 denotes 

degrees of freedom: 

T�.��5 (9)=14.684 ,  T�.�_5 (9)=16.919 ,  T�.�5_5 (9)=19.023 ,  T�.��5 (9)=21.666 ,  T�.��_5 (9)=23.589 ,  

see Ramachandran and Tsokos (2009), p 766. 

Decision Rule for Group 1: 

T5 =10.95<T5̀=16.92  accept the null hypothesis H0 at the confidence level 95%. In other 

words, the data obeys Benford’s law at the confidence level 95%.  

Decision Rule for Group 2: 
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T5 =11.48<T5̀=16.919 accept the null hypothesis H0 at the confidence level 95%. 

Decision Rule for Group 3: 

The observed value T5 =27.09>T5̀=23.589       reject the null hypothesis H0 at the confidence level 

99%. In other words, the data diverges from Benford’s law at the confidence level 99.5%. 

Decision Rule for group 4: 

T5 =10.68<T5̀=16.919 accept the null hypothesis H0 at the confidence level 95%. 

Decision Rule for Group 5: 

T5 =19.55>T5̀=16.919   reject the null hypothesis H0 at the confidence level 95%. In other 

words, the data do not obey Benford’s law at the confidence level 95%. 

Consider the groups 1,2,3,4,5 together. Test the hypothesis whether the data set obeys (or contradicts) 

Benford’s law.  

Group 1 U Group 2 U Group 3 U Group 4 U Group 5 

The observed value of the test statistics is: 

T5 = 
5."Y

Z5�." + 
5�.^Y
Z�[.\ + 

^ZY
5"_ + 

5._Y
5]Z._ + 

�Z.\Y
5[Z.^ + 

��."Y
5\Z." + 

�5._Y
5__._ + 

�Z._Y
5^[._ + 

^.\Y
5^�.^ + 

^�.ZY
ZZ].Z = 15.15 

The critical value of the test statistics is T5̀=T�.��5 (9) = 14.68 

Decision Rule 

T5 =15.15>T5̀=14.684   reject the null hypothesis H0 at the confidence level 90%. In other 

words, the demographic data 2011 Census-Al contradicts Benford’s law at the confidence level 90%. 

4. Conclusion 

In the present study we develop a statistical analysis based on Benford’s law for the second digit of 

demographic data 2011 Census-Albania. We consider five different groups of the data. The source of 

official data is The Albanian Institute of Statistics (INSTAT). The main objective of the study is to 

contribute to the debate whether the demographic data 2011 Census-Al obeys Benford’s law. Benford’s 

law governs the asymptotic probability distribution of many (but not all) real-life sources of data, which 

satisfy the assumptions 1,2,3 and 4 presented in section 1 of the study. Hill (1995) provided a measure-

theoretical proof that data selected (obtained) from a random mix (mixture) of different random variables 

will ultimately converge to Benford’s law, even though the individual probability distributions may not 

closely follow the Benford’s law. If the random variables X1, X2, … Xn , are selected at random and the 

random samples are obtained from each of these random variables X1, X2, … Xn  , then the combined 

random sample will converge to Benford’s law. 

Attempts at intuitive explanation of Benford’s law have centered on ideas of scale invariance and base 

invariance. 
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The scale invariance argument says that any universal law of nature (especially Benford’s law) should not 

depend upon the units of measurement. For example, if we were to convert the land areas of the world 

states from km
2
 to miles

2 
, then the rescaling data should obey Benford’s law. Similarly, any universal law 

of nature (like Benford’s law) should not depend on the number bases 10 or 2 or 3 or… 

Benford’s law has intrigued scientists for over a century. Many scientists have come to the conclusion 

that Benford’s law is a tantalizing and mysterious law of nature, for which the true explanation lies with 

the God (Fewster, 2009). The underlying reason why Benford’s law occurs is, however, elusive. We 

believe that Benford’s law is an universal law of nature. The probability of violating Benford’s law in the 

known part of universe is relatively small (Raimi, 1976).  

The populations of 235 countries and regions of the world in 2013 (using CIA world factbook) obey 

Benford’s law. The populations of the cities of USA in 2013 obey Benford’s law.  

Some results of the present study include:  

- The mean of second digit for all five groups of the data obtained (selected) from 2011 Census-Al 

are in very good accord with Benford’s law (at the confidence level 95%).  

Decision Rule for Group 1: 

The data obeys Benford’s law at the confidence level 95%. 

Decision Rule for Group 2: 

The data obeys Benford’s law at the confidence level 95%. 

Decision Rule for Group 3: 

The data contradicts Benford’s law at the confidence level 99.5%. 

Decision Rule for Group 4 : 

The data obeys Benford’s law at the confidence level 95%. 

Decision Rule for Group 5: 

The data contradicts Benford’s law at the confidence level 95%. 

Decision Rule for all Groups 1,2,3,4,5 together: 

The demographic data 2011 Census-Al contradicts Benford’s law at the confidence level 90%. 

Therefore, these 2827 official data obtained from 2011 Census-Al are suspectable for manipulation. 

 

 

 



14 

 

 

 

 

 

 

 

 

 

References 

2011 Census-Al, published by INSTAT, Tirana, Albania 

Diaconis, P. and Freedman, D. (1979). On rounding percentages, J. Amer. Stat. Assoc. , 359-364. 

Durtschi, C. , Hillson, W. and Pacini, C. (2004). The effective use of Benford’s law to assist in 

detecting fraud in accounting data, Journal of Forensic Accounting 1524-5586/Vol. V, pp 17-34. 

Fewster, R. M. (2009). Simple explanation of Benford’s law, The American Statistican, February, 

Vol. 63, No. 1, pp 26-32. 

Field, A. (2009). Discovering Statistics Using SPSS (3rd.edition), London: Sage. 

Hill, T. P. (1995). A statistical derivation of the significant-digit law, Statistical Science, Vol. 10, No. 

4, pp 354-363. 

Hill, T. P. (1995). The significant-digit phenomenon, The American Mathematical Monthly, Vol. 

102, No. 4, pp 322-327. 

Hill, T. P. (1998). The first-digit phenomenon, The American Scientist, July-August, 86:358. 

Janvresse, E. and Th. De la Rue (2004). From uniform distribution to Benford’s law, Journal of 

Applied Probability, 41, 1203-1210. 

Nigrini, M. J. (1996). Taxpayer compliance application of Benford’s law. Journal of the American 

Taxation Association. 18 (1) : 72-92. 

Nigrini, M. J. and Wood, W (1995). Assessing the integrity of tabulated demographic data, Preprint, 

University of Cincinnati and Saint Mary’s University. 

Raimi, R. K. (1976). The first digit problem. The American Mathematical Monthly, 83, 521-538. 

Ramachandran, K. M. and Tsokos, C. P. (2009). Mathematical Statistics with Applications, Academic 

Press, Elsevier, Boston, USA. 



15 

 

Tao, Terence (2009). Benford’s law, Zipf’s law, and the Pareto distribution 

(http://terrytao.wordpress.com/2009/07/03) 

 


